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Abstract. There is an interesting dichotomy between a space-time metric considered as external field in
a flat background and the same considered as an intrinsic part of the geometry of space-time. We shall
describe and compare two other external fields which can be absorbed into an appropriate redefinition
of the geometry, this time a noncommutative one. We shall also recall some previous incidences of the
same phenomena involving bosonic field theories. It is known that some such theories on the commutative
geometry of space-time can be re-expressed as abelian-gauge theory in an appropriate noncommutative ge-
ometry. The noncommutative structure can be considered as containing extra modes all of whose dynamics
are given by the one abelian action.

1 Introduction and motivation

It is known that some bosonic field theories on the com-
mutative geometry of space-time can be re-expressed as
abelian-gauge theory in an appropriate noncommutative
geometry. This fact is quite the analogue of the dichotomy
in general relativity between the components of a metric
considered as external fields in a flat background and the
same components considered as defining the metric and
therefore a non-flat geometry. In the next section we men-
tion very briefly a certain number of examples which have
been considered in the past and which exhibit the prop-
erty of an external field which can be incorporated into a
redefinition of the basic geometry. The noncommutative
structure can be considered as containing extra modes all
of whose dynamics are given by the one abelian action. An
example is afforded by the Yang-Mills-Higgs-Kibble action
of the standard model [1,2]. Somewhat analogous results
are also known, for example, for non-relativistic hamilto-
nians and classical spin. Some of the most illuminating
examples are taken from the field of simple hamiltonian
mechanics. Complicated non-local non-polynomial hamil-
tonians can be considered [3,4] as the free-particle hamil-
tonian in appropriately chosen geometries. An important
dynamical variable which can also be considered as part
of the space-time geometry is classical spin; a relativis-
tic spinning particle can be described [5] as an ordinary
particle in a noncommutative geometry.

We shall be mainly concerned with a further example
of this sort, involving an external field B which can be
absorbed into an appropriate redefinition of the commu-
tation relations of a noncommutative geometry [6]. When
considered as part of the geometry the field B changes the
structure of the gauge group, indirectly because of the way

the commutation relations of the algebra depend on it. A
Yang-Mills potential A has one gauge group in the pres-
ence of a B field considered as external field and its non-
commutative counterpart Â has another. Since the physics
cannot depend on the interpretation of the field there must
be a well-defined map Â = Â(A,B) which reduces to the
identity when B = 0. In the third section we shall in-
terpret this map as a map between covariant derivatives.
We also mention the Kaluza-Klein interpretation. The set
of noncommutative structures over space-time is in many
aspects similar to a Kaluza-Klein extension. This is partic-
ularly clear when the noncommutativity is due to a matrix
algebra [5]. The B field acts then as a set of extra coor-
dinates which parametrize the extra dimensions. This is
implicit in earlier work [7,5] where the role of the B field
is played by the spin. In fact by simply counting indices
one can conclude that extra variables are necessary. If an
algebra has 4 generators then the set of all commutators
has 6 elements. The smallest algebra one can consider is
the associative algebra of dimension 10 = 4 + 6 which is
a representation of the Lie algebra of the de Sitter group.
In the last section we present a finite model which illumi-
nates some of the aspects of the map. In the Appendix we
recall some basic facts about the particular version of non-
commutative geometry which will be used. We shall set a
tilde on a quantity when it is necessary to distinguish the
commutative limit. Words in quotes are ill-defined.

2 Paleoparadigmata

A free particle in motion in a curved space-time can be
considered as a particle in a flat space-time moving under
the influence of an external field. There is an analogous
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example in noncommutative geometry. Consider an inter-
action hamiltonian H = H0 + V on the real line R with
time added or not. Then for appropriate V these hamil-
tonians are equivalent [3,4] to free hamiltonians acting on
often exotic noncommutative structures. Such phenomena
exist also in field theory. There have been in the recent lit-
erature several models which can be either considered as
unified field theories on flat space-time or as abelian gauge
theory on an appropriate noncommutative geometry. We
mention these models first as examples of the phenomenon
which we wish to investigate here because they can also be
interpreted from another closely related point of view, that
of dimensionally reduced Kaluza-Klein theories. There is
a version of this theory which involves a matrix geom-
etry in the hidden dimensions and so an abelian-gauge
theory in the noncommutative geometry appears as an
Un gauge theory including the associated Higgs-Kibble
scalars, when regarded traditionally as an external field
problem in a plain, flat geometry. Two simple examples
can be given to illustrate how the abelian-gauge action
over a noncommutative geometry contains supplementary
fields when reinterpreted in terms of ordinary geometry.
These examples involve noncommutative extensions of the
algebra of functions on space-time. The extra modes are
hidden in the extra structure. For simplicity of presenta-
tion we shall replace space-time by a point and consider
only the extra noncommutative geometry.

As a first example [2] write C
2 = C

1 ⊕ C
1 and de-

compose accordingly the algebra of 2 × 2 matrices M2 =
M+

2 ⊕M−
2 into diagonal and off-diagonal parts. The com-

mutative algebra M+
2 is the algebra of functions on 2

points. Introduce a graded derivation dα of α ∈ M2 by

dα = −[η ,α], η ∈ M−
2 .

The bracket is graded and η is anti-hermitian. We find
that dη = −2η2 and that d2α = [η2 , α]. If we choose η
such that η2 = −1 then d2 = 0. Then Ω∗

η = M2 is a
differential calculus over M+

2 . Notice that

dη + η2 = 1. (2.1)

Choose ψ ∈ M+
2 . A covariant derivative is given by

D(0)ψ = −ηψ. (2.2)

We recall that a covariant derivative must satisfy a left-
Leibniz rule. Because of the definition of d one sees that
this is indeed the case:

D(0)(fψ) = −ηfψ = dfψ − fηψ.

The most general D is necessarily of the form

Dψ = −ηψ − ψφ

where φ defines a left-module morphism of M+
2 . If one

introduce the map

dψ = −[η ,ψ]

one can write Dψ = dψ − ψω in terms of a ‘connection
form’ ω = η + φ which transforms as

ω′ = g−1ωg + g−1dg, g ∈ U1 × U1.

Since in particular η′ = η one finds that

φ′ = g−1φg. (2.3)

The curvature is

Ω = dω + ω2 = 1 + φ2 = 1 − |φ|2

and the analogue of the abelian-gauge action is given by

V (φ) =
1
4

Tr(1 − |φ|2)2.

We emphasize the fact that it is abelian-gauge theory;
the geometry has changed not the theory being studied.
Because of the exotic geometry however the result looks
more like abelian Higgs theory.

As another example [1,5] we consider the algebra Mn

of n×n complex matrices with an anti-hermitian basis λa

of SUn and define the frame

θa = λbλ
adλb.

The structure of the algebra Ω∗(Mn) is given by the re-
lations θaθb = −θbθa. These relations can be rewritten in
the form (A5) in the special case (A9). It is easily seen
that

dθa = −1
2
Ca

bcθ
bθc

from which follows that

dθ + θ2 = 0, θ = −θaλa. (2.4)

A special covariant derivative is given by

D(0)ψ = −θψ

and the most general one is of the form

Dψ = −θψ − ψφ.

If one introduce the map

dψ = −[θ ,ψ] (2.5)

one can write again Dψ = dψ−ψω in terms of a ‘connec-
tion form’ ω = θ + φ which transforms as

ω′ = g−1ωg + g−1dg, g ∈ Un.

Since in particular θ′ = θ one finds again (2.3). The cur-
vature is

Ω = dω + ω2 =
1
2
Ωabθ

aθb

where
Ωab = [φa ,φb] − Cc

ab φc.
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The Cc
ab is a sort of ‘Christoffel symbol’; the algebra Mn

with the present differential calculus is ‘curved’ as a ge-
ometry. The analogue of the electromagnetic action is

V (φ) =
1
4

Tr(ΩabΩ
ab).

Again, as above, this action describes ‘abelian-gauge’ the-
ory on a noncommutative ‘space’. By radically changing
the ‘space’ we have radically changed the aspect of a well-
known theory.

We have presented these two examples in some de-
tail since they illustrate well the definition of a covariant
derivative. In both cases the module is a bimodule over the
algebra. The covariant derivative however uses only the
right-module structure and satisfies a right-Leibniz rule.
The left-module structure is reserved for the action of the
gauge group which we identify as a subset of the algebra.
We shall encounter similar calculations in the next section.

As examples of noncommutative extensions of space-
time we shall choose algebras which are deformations of
the algebra of smooth functions on Minkowski space. Let
x̃µ be cartesian coordinates. As has been done previously
[7,5,8] we replace x̃µ by four hermitian generators xµ, el-
ements of an abstract ∗-algebra A which do not commute:

[xµ ,xν ] = ik̄Jµν , xµ∗ = xµ. (2.6)

The parameter k̄ is so chosen so that Jµν has no dimen-
sions. We shall set k̄ = 1 by a choice of units. A natural
Ansatz which respects all reflection symmetries would be

xµ = x̃µ + κJµ, Jµ = z̄γµz. (2.7)

We shall impose on z the following commutation relations:

[z ,z] = 0, [z , z̄] = 1, [z̄ , z̄] = 0. (2.8)

The unit on the right-hand side of these equations is the
tensor product of the unit in the Clifford algebra and the
unit in the operator algebra. Written out in terms of com-
ponents of the Dirac spinors Equations (2.8) become

[zα , zβ ] = 0, [zα , z̄β ] = δα
β , [z̄α , z̄β ] = 0.

If we introduce

Sµν = z̄σµνz, σµν =
i

2
[γµ , γν ]

then from the commutation relations (2.8) follow the com-
mutation relations (2.6) for the generators with

Sµν = −Jµν , k̄ = 2κ2.

We can consider the Dirac spinor as an element of the
quantized version of an algebra of functions over the clas-
sical phase space (z , z̄) with Poisson bracket {z , z̄} = i.
There are therefore two distinct quantization procedures,
the ordinary one involving � and this new one. As a mathe-
matical simplification we shall ‘dequantize’ z and consider
the classical phase space (z , z̄). Introduce Cλ by

Cλ =
i

2
(
(z̄γλ)α∂̄

α − (γλz)α∂α

)
, ∂α = ∂/∂zα

and consider the condition

∂λC
λf = 0. (2.9)

This is of second order in all the derivatives but of first or-
der in ∂λ. So it resembles a constraint. If f depends only
on the quantity xλ defined in (2.7) then (2.9) is identi-
cally satisfied. However, the converse is not true. To the
(x̃µ, z, z̄) we add pλ to form a phase space. We extend
the bracket by requiring that (pλ, x̃

µ) Poisson-bracket-
commute with (z, z̄). It is not this full phase space which
interests us but rather the reduced phase space given by
the (pλ, x

µ, z, z̄) which satisfy the constraints (2.9). This
reduced phase space describes the motion of a spinning
particle. Define Sλ by

Sλ = z̄γλγ5z.

Then the constraints (2.9) are equivalent to the conditions

p2 − µ2 = 0, pµS
µ = 0, z̄γ5z = 0,

µJλ = z̄zpλ, µSµν = εµνρσpρSσ.

The parameter µ is a mass parameter.
Models can be constructed using the tensor product,

for example using the algebras introduced in (3.4). We
shall need to slightly change our notation since the sit-
uation we consider here is very similar to the situation
of the next section in which A and Â describe noncom-
mutative versions of flat space-time or of a brane and the
matrix factor is a modified Kaluza-Klein extension [5]. Let
A and B be two algebras with differential calculi Ω∗(A)
and Ω∗(B). Then there is a natural differential calculus
over the A ⊗ B given by

Ω∗(A ⊗ B) = Ω∗(A) ⊗Ω∗(B). (2.10)

If α ∈ Ω∗(A), β ∈ Ωp(B), γ ∈ Ωq(A) and δ ∈ Ω∗(B) then
the product in Ω∗(A) ⊗Ω∗(B) is given by

(α⊗ β)(γ ⊗ δ) = (−1)pqαγ ⊗ βδ. (2.11)

Equation (2.10) does not define the only choice of dif-
ferential calculus over the product algebra. Consider the
module of 1-forms

Ω1(A ⊗ B) = A ⊗Ω1(B) ⊕Ω1(A) ⊗ B.

It can be used to construct another differential calculus
Ω∗(A ⊗ B) over the tensor product of the two algebras
which is in a sense the largest which is consistent with the
module structure. This extension is in general larger than
the tensor product. If θα is a frame for Ω1(A) and θa is a
frame for Ω1(B) then

(θα, θa) = (θα ⊗ 1, 1 ⊗ θa)

is a frame for Ω1(A ⊗ B). The commutation relations for
each factor can be extended to the entire frame by the
rule (2.11). In this case both constructions yield the same
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algebra of forms. We are interested in the case with B =
Mn. Then if we define

Ω1
h = Ω1(A) ⊗Mn, Ω1

v = A ⊗Ω1(Mn),

we can write Ω1(A ⊗Mn) as a direct sum:

Ω1(A) = Ω1
h ⊕Ω1

v .

The differential df of an element f of A is given by

df = dhf + dvf.

We have written it as the sum of two terms, the horizon-
tal and vertical parts, using notation from Kaluza-Klein
theory. The algebra Ω∗(A) of differential forms is given
in terms of the differential forms of each factor by the
formula:

Ωp(A ⊗Mn) =
⊕

i+j=p

Ωi(A) ⊗Ωj(Mn). (2.12)

Consider two elements f, g ∈ A ⊗ Mn. Let xµ be the
generators of A and use the Gell-Mann matrices λa as a
basis of Mn, as described in the Appendix. If we expand
f = f0 + faλa and g = g0 + gaλa then we find that the
commutator is given by

[f ,g] =
1
2

[fa , gb]F c
abλc +

1
2

[fa , gb]Dc
abλc

+
1
n

[fa , gb]gab + ([f0 , ga] − [g0 , fa])λa.

As a set of generators for the algebra we can choose the
tensor products xµ⊗1 and 1⊗λa. These would correspond
respectively in Kaluza-Klein theory to the space-time co-
ordinates and the internal coordinates. The commutation
relations for the two sets follow immediately from (3.10),
with an appropriate change of notation.

An interesting example can be found [9] using group
manifolds. A group manifold MG can be embedded as a
submanifold of its Lie algebra considered as an euclidean
space. Let xi be the coordinates of this space and con-
sider the Poisson bracket defined by the Lie bracket. The
procedure of star quantization will yield once again the
Lie bracket. If the group is compact all irreducible repre-
sentations will be of finite dimension; there are an infinite
number indexed by Casimir operators ci, each with a well-
defined dimension di. If we set A = C(MG) then we can
write

Â =
⊕

ci

Mdi
.

This situation generalizes to arbitrary Kähler manifolds
[6]. We are especially interested in situations which at least
in some formal sense we can identify

ĝ ∼
⊕

i

suni
. (2.13)

If the algebra Â contains a matrix algebra Mn then one
can consider sun as a subalgebra of ĝ.

3 Noncommutativity versus field theory

Consider again the formal algebra A of the previous sec-
tion defined less precisely in terms of commutation re-
lations of the form (2.6) but with the right-hand side a
non-specified set of elements of the algebra. Consider also
a second algebra Â which has the same number of gener-
ators x̂i but in general a different set of elements Ĵ ij on
the right-hand side of the commutation relations. We shall
suppose that both of these algebras can be represented as
subalgebras of the algebra of differential operators Ã on
some space of smooth functions. In the Appendix such a
representation is given explicitly in a special but impor-
tant case. We designate the product in A by ∗ and in Â
by ∗̂.

We assume that there is an algebra homomorphism

Â ρ−→ A (3.1)

of Â onto A which can be formally defined by the action

xi = ρ(x̂i) = Λi(x̂j)

on the generators. By assumption then

ρ(x̂i ∗̂ x̂j) = xi ∗ xj = ρ(x̂i) ∗ ρ(x̂j). (3.2)

The kernel of ρ is a 2-sided ideal so Â cannot in any sense
of the word be ‘simple’. If Â is commutative then so obvi-
ously is A; if on the other hand A is commutative then the
kernel of ρ contains necessarily the ideal generated by the
commutators. If Ĵ is non-degenerate then this can again
by identified with A and so ρ = 0. In the special case with
J and Ĵ constant non-degenerate matrices we can choose
F i(x̂j) = F i

j x̂
j a linear transformation. We have then

xi ∗ xi = F i
kF

j
l x̂

k ∗̂ x̂l, J ij = F i
kF

j
l Ĵ

kl.

In general the relation between the generators is much
more complicated. If we can write for example F i(x̂j) =
x̂i − ξi(x̂j) as a linear perturbation then

ik̄J ij = [xi ,xj ] = [ρ(x̂j), ρ(x̂j)] = ik̄Ĵ ij − k̄[x[i , ξj]].

which we write in the form

Ĵ ij = J ij + θij , ik̄θij = −i[x[i , ξj]]. (3.3)

If we suppose that J ij is constant then using the λ̂a of the
Appendix and writing ξi as ξi = ik̄J iaaa we find that

θij = k̄J iaJjbe[aab].

In this case the perturbation of the commutation relations
is related to the exact form

f = da, a = abθ
b, f =

1
2
e[aab]θ

aθb.

We show in the Appendix that dθa = 0. We refer to the
literature [6] for a description of the relation between θij

and the B field.
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One might be tempted to consider the F i(x̂j) as a
‘change of coordinates’. But the change is in the ‘phase
space’ of which Ã is the structure algebra and so when
one looks for a similar transformation in ordinary geome-
try one must imagine not only a change of coordinates but
also a shift in the position because of the term in the defi-
nition of the generators which depends on the momentum.
What can more properly be considered as a change of co-
ordinates is an automorphism of the algebra, for example
the inner automorphism

x̂i = Λ−1xiΛ.

In this case the product is conserved.
It is perhaps preferable to consider ρ as a change of

product on one fixed vector space. We drop then the hat
on the generators and distinguish the two products by
putting a hat on one of them. In the case of a linear per-
turbation (3.2) becomes

ρ(xi ∗̂ xj) = xi ∗ xj + xi ∗ ξj + ξi ∗ xj

The requirement that the new product be associative
places restrictions [10] on the ξi.

In general one can consider the set S0 of all products
on the vector space A. There is a subset S1 ⊂ S0 in which
the product is associative; this is the set which interests
us here. Let π be a given product and consider the or-
bit S2 ⊂ S1 of π under the group of all possible maps
ρ. This group has a subgroup of automorphisms of A,
which leave the product invariant. In a formal sense S2
can be identified with the quotient of the two groups. In
general S1 will be a union of orbits of different products
of non-isomorphic algebras. If we assume that there are
no relations other than the commutation relations (2.6)
then the set S2 will be parameterized by the J ij . To pass
from stratum of S1 to another would require a singular
variation in J . A familiar example from the theory of Lie
algebras is furnished by the embedding SUn ↪→ SOn2−1.
If {λi} is a set of generators of the Lie algebra of SUn

then so is the set {λ̂i} with λ̂i = g−1λig for g ∈ SUn.
One can write then {λ̂i} = Λj

iλj where the transforma-
tion coefficients are complex numbers. It is the analog of
those transformations of SOn which do not respect the
Lie algebra structure which interests us here.

As a limiting case with singular ρ one consider an al-
gebra Â with a non-degenerate Ĵ and an algebra A with
J = 0. In the latter case we can identify xi with x̃i, the
‘space’ coordinates of Ã. The ‘lift’ by the inverse of ρ is a
quantization procedure, a way of associating an operator
to a function. One such method is the Weyl-Moyal quanti-
zation procedure [11,12] which furnishes a ‘natural’ right
inverse for ρ which lifts an element f ∈ A to an element
f̂ ∈ Â. This is a map between two different strata of S1.

Let H be a right A-module and Ĥ be a right Â-module.
We shall place a hat on an element of H whenever it is
necessary to distinguish the Â-module structure. For sim-
plicity we shall suppose that both modules are free over
their respective algebras and so the map ρ can be extended
to a map

Ĥ ρ−→ H

between the two of them. We shall simplify even further
and suppose that the module is of rank one. It can be
identified therefore with the respective algebra and each
identification is equivalent to a choice of gauge. We choose
ψ0 ∈ H as basis of H as both A-module and Â-module
and we write ψ = ψ0 ∗ f and ψ̂ = ψ0 ∗̂ f . This defines
the map ρ in terms of the products. We shall suppose
that the potential A lies in the Lie algebra g of a Lie
(pseudo)group G which we shall take to be a subgroup of
the unitary elements of A and likewise that Â lies in the
Lie algebra ĝ of a Lie (pseudo)group Ĝ. We shall suppose
that the gauge group acts on the left. The left action of
G on H is compatible with the algebra action from the
right. This condition is automatic in normal Yang-Mills
theory where the two actions always commute. Since the
derivative is covariant from the left one has also

D(g−1ψ) = g−1Dψ, g ∈ G.
If g � 1 + h then one can write this in the form of a left
Leibniz rule for h.

In ordinary geometry the case we are considering
would be called an abelian gauge theory. This is in fact
more general since gauge theory with unitary groups can
be incorporated simply by the replacements

Mn ⊗ A �→ A, Mn ⊗ Â �→ Â. (3.4)

It is only important that the matrix factor be the same for
both algebras since otherwise the map ρ in general would
not be interesting. If we choose the differential calculus
given by (2.12) and make the replacement (3.4) then we
can consider (3.11) below to be valid also in the product
case. The bracket must be chosen to be that of the product
algebra.

We suppose finally that there is a differential calculus
Ω∗(A) over A and a differential calculus Ω̂∗(Â) over Â and
that the map ρ can be extended to an algebra morphism

Ω̂∗(Â)
ρ−→ Ω∗(A)

of the latter onto the former. As important special cases
we mention the calculi whose modules of 1-forms are free
with a special basis (frame) θa and θ̂a as given in the
Appendix. We have then the identifications

Ω1(A) =
d⊕

1

A, Ω̂1(Â) =
d⊕

1

Â.

The integer d here is the ‘dimension’ and must be the
same in both cases. The extension of ρ can be defined by
setting

ρ(df̂) = dρ(f̂). (3.5)

This is a natural extension but it is not necessarily com-
patible with the identification of a form with its compo-
nents. The image of a free module is not necessarily free.

Let D and D̂ be covariant derivatives defined on re-
spectively H and Ĥ. We introduce the gauge potentials as
usual by the conditions

Dψ0 = ψ0 ∗A, D̂ψ0 = ψ0 ∗̂ Â.
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These define D and D̂ on all of H either by the Leibniz
rule or by the gauge covariance. If f � 1 + h then to first
order in h we can write

Dψ = ψ ∗ (A + Dh), D̂ψ = ψ ∗̂ (Â + D̂h).

We have here introduced the covariant derivatives

Dh = dh + [A,h], D̂h = d̂h + [Â ,̂h]

of an element h ∈ A (Â), with

[A,h] = A ∗ h− h ∗A, [Â ,̂h] = Â ∗̂ h− h ∗̂ Â.

Conversely, given A and Â one can construct a map [13]

SW : D −→ D̂

between the two derivatives by assuring that the two Leib-
niz rules are satisfied. The map SW becomes then an equa-
tion because of integrability conditions; it must be well-
defined on all of H.

If ρ is an automorphism then D̂−D is a (right) module
morphism. One can neglect the distinction between the
two products and write

D̂h = Dh + [Γ ,h] (3.6)

with Γ = Â−A. If we define the variation

δhΓ = D̂h−Dh (3.7)

of Γ under multiplication by f � 1 + h, we see that it is
given by

δhΓ = [Γ ,h]. (3.8)

This is the well-known formula which expresses the gauge
covariance of the difference between two connections. The
map SW is a generalization of this formula to situations
where the two connections in question are with respect to
two different gauge groups.

In general, if ρ is not an automorphism, then (3.8) will
have no solution and we cannot define Γ as we have done.
Since ρ is surjective we can introduce a function γ(h) with
values in A such that

ψ0 ∗̂ (1 + h) = ψ0 ∗ (1 + h)(1 + γ).

This implies that ψ0 ∗̂ dh = ψ0 ∗ d(h + γ) and therefore
that

D̂ψ = ψ ∗ D̂(h + γ[h]).

Using the definition of δhΓ given above this can be written
as

δhΓ = Dγ+D̂h−Dh = Dγ+[Γ ,h]+[Â ,̂h]− [Â,h]. (3.9)

If ρ is not an automorphism then to compensate for the
difference between ρ and an automorphism we have intro-
duced an element γ ∈ g. This is equivalent to an inter-
pretation of the modification of the product by a change

of gauge. We have in fact identified the gauge group as
the unitary elements of the algebra. When we change the
structure of the algebra this entails necessarily a change in
the structure of the gauge group and hence of the Lie alge-
bra. In certain cases the change involves a finite number of
parameters in the commutation relations. As an example
of this one can consider (3.3) with the θij real numbers.
A gauge transformation which depends on these extra pa-
rameters is equivalent to a local gauge transformation in
a Kaluza-Klein extension of the theory with the θij as the
local coordinates of the extra dimensions. The variation
described in (3.9) is however for fixed ‘Kaluza-Klein’ pa-
rameters and gives only the variation of Γ under change of
gauge. Having found the solution explicitly in terms of the
extra parameters one could calculate also their variation.

Both D and D̂ can be extended to the entire differen-
tial calculus; in general however there is no extension of
SW. In the special cases we are considering here both of
the differential calculi can be written in the form

Ω∗(A) = A ⊗ ∧∗

where the second factor is the deformed exterior algebra
over the vector space spanned by the frame. If

∧∗ =
∧̂∗

then both ρ and SW can be extended to the exterior al-
gebra. We can write

Dψ = θaDaψ, D̂ψ = θ̂aD̂aψ.

We shall restrict our attention here to the important spe-
cial case with the projector P ab

cd, defined in the Ap-
pendix, given by the expression (A9). We have then

[λa ,λb] = λcF
c
ab + Kab, [λa ,̂λb] = λcF̂

c
ab + K̂ab.

(3.10)
It follows from (A5) that the product structure of the
frame is the same with or without hat. One finds from
(A17), to lowest order, the expression

êaf = eaf + ik̄θbc[λb ,̂λa] ∗̂ êcf

for the ‘partial derivatives’. As seen by comparing (3.10)
with (A20), this is an identity. The frame is gauge invari-
ant: δhθ

a = 0. Because of the special properties of the
frame (3.9) can be written using components as

δhΓa = Daγ + [Γa ,h] +
1
2
θbc[ebAa ,ech] + +o(k̄2). (3.11)

The solution is difficult to find in general but if the defor-
mation parameter k̄ which defines the algebra Â in terms
of A is small a formal Taylor-series expansion can be given
[13]. In the limit then Jab → 0 (3.11) can be written using
only ordinary derivatives as

δhΓ
a = θajDjγ + [Γ a ,h] − 1

2
θkl[∂kh,∂l(θajaj)],

Γ a = θabΓb. (3.12)
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To emphasize the special status of this case we have writ-
ten the potential using a lower-case letter: Ai �→ ai.

In principle the preceding must be generalized to the
case where the covariant derivative includes a gravita-
tional contribution. We have changed the structure of the
algebra without changing that of the differential calculus
and this is not always possible. With the formalism we
have used, based on the existence of a frame we have es-
sentially assumed that the differential calculus is not gauge
dependent. In general this will not be true since the gauge
group depends on the structure of the algebra and the
differential calculus depends on the latter. The pair (γ, Γ )
of external fields depends through (3.9) on the Poisson
structure θ which in turn can be identified with the B
field. One can say then that the map SW is another ex-
ample of the equivalence between the point of view which
considers geometry as an essential given aspect of space-
time and the point of view which considers geometry as
a convenient description of an external field on a conven-
tional space-time. In other words we are lead to interpret
SW as a correspondence between on the one hand some
physical situation with external fields and on the other
the same physics but with the extra variables considered
as an intrinsic part of a noncommutative geometry.

4 Neoparadigma

In this section we shall consider an example of the map SW
constructed using the first two examples of Sect. 2. This
will consist in a contraction of the second model onto the
first [14]. The algebras are respectively

Â = M2, A = M+
2 .

One can think of the limit as the classical limit of a quan-
tum spin or as a contraction of a gauge group. The ‘local’
gauge group of the algebra M2 is the group U2 and that of
M1×M1 is U1×U1. Associated to the latter are two gauge
potentials, the photon γ and a massive neutral vector bo-
son Z0; the former has also a massive charged W . The
contraction can be implemented by letting the W mass
tend to infinity. The role of the B-field is played by the
charged W -boson. In this example there is no obvious in-
terpretation of the commutation relations of Â in terms of
a B-field, unless it be the fact that the W -boson takes its
values in the complement of U1 × U1 in U2. The passage
from A to Â is here an example of a map between algebras
which is not a deformation quantization.

We introduce ρε by the action

ρε(λ̂1) = ελ1, ρε(λ̂2) = ελ2, ρε(λ̂3) = λ3

on the Pauli matrices. Therefore the structure constants
rescale as

C1
23 = Ĉ1

23, C2
31 = Ĉ2

31, C3
12 = ε−2Ĉ3

12

and the metric as gab = diag(ε2, ε2, 1). For all ε > 0 this
is a redefinition of the product of M2 such that ρε is an

isomorphism and for ε = 0 it is a singular contraction. We
define ρ0 to be the singular limit as ε → 0. If we decompose
f̂ = f̂+ + f̂− then we have ρε(f̂) = f+ + εf− and

ρε(f̂ ∗̂ ĝ) = f+ ∗ g+ + o(ε).

It follows that the image of ρ0 contains nilpotent elements.
This accounts for the difference in the dimensions of Â and
A. Except for a rescaling the frame remains invariant un-
der the contraction and the extension (3.5) is given simply
by

θ1 = εθ̂1, θ2 = εθ̂2, θ3 = θ̂3.

The differential remains invariant:

ρε(d̂f̂) = dρε(f̂).

We choose ψ0 = 1, the unit matrix of M2 and we set
D̂ · 1 = Â = Âaθ̂

a. The image Â under ρε must be of the
form ρε(Â) = A3(λ3)θ3 + o(ε). The remaining two modes
become infinitely heavy in the limit and decouple. With
the identifications it follows that near the identity matrix
we can write ĥ = h + γ. We can therefore write

D̂ĥ = d(h + γ) + [Â ,γ] + [Â ,̂h], Dh = dh

and (3.9) becomes the equation

δhΓ = dγ + [Â ,γ] + [Â ,̂h].

Since h defines a gauge transformation of A it must be of
the form h = h3λ

3. If therefore Â = Â(λ̂3) then a solution
is given by γ = 0, Γ = 0. One can consistently choose
Â = A. If on the other hand

Â = Â3(λ̂1, λ̂2)θ̂3,

for example, then the equation becomes the equation

δhΓ3 = e3γ + [A3, γ] + [Â3 ,̂h] (4.1)

for the third component. The source term [Â3 ,̂h] now is

not equal to zero and the external fields, the difference
between the potentials Γ3 as well as the ‘scalar’ γ, can-
not vanish. We are free to interpret them as components
in a noncommutative geometry or as external fields in a
commutative (albeit discrete) one.

Acknowledgements. The authors would like to thank Paolo As-
chieri, Gaetano Fiore and Harold Steinacker for enlightening
conversations.

Appendix

Let A be a noncommutative algebra with a differential
calculus Ω∗(A). A large class of differential calculi, but
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not all, are such that the module Ω1(A) is free as a left
or right A-module and has a special frame θa with

[f ,θa] = 0, 1 ≤ a ≤ n (A2)

which is dual to a set of derivations ea = adλa:

df = eafθ
a = [λa , f ]θa = −[θ ,f ], θ = −λaθ

a. (A3)

The set of θa is the noncommutative equivalent of a Car-
tan moving frame and in ordinary geometry the deriva-
tions ea would be called Pfaffian derivatives. The ‘Dirac
operator’ θ generates Ω1(A) as a bimodule; it is not a free
bimodule. The λa must satisfy the consistency condition
[15]

2λcλdP
cd

ab − λcF
c
ab −Kab = 0. (A4)

It has been shown recently [16] that this can be interpreted
as a vanishing-curvature condition.

The P cd
ab define the product in the algebra of forms:

θaθb = P ab
cdθ

cθd. (A5)

The F c
ab are related to the 2-form dθa through the struc-

ture equations:

dθa = −1
2
Ca

bcθ
bθc, Ca

bc = F a
bc − 2λeP

(ae)
bc. (A6)

The Kab are related to the curvature of θ:

dθ + θ2 =
1
2
Kabθ

aθb.

All the coefficients lie in the center Z(A) of the algebra.
With no restriction of generality we can impose the con-
ditions

F e
cd = P ab

cdF
e
ab, Kcd = P ab

cdKab. (A7)

Define
Cab

cd = δa
c δ

b
d − 2P ab

cd.

Then from the fact that P cd
ab is a projector we find that

Cab
cdC

cd
ef = δa

e δ
b
f . We can write then the first term of

(A4),

2λdλeP
de

bc = λbλc − λdλeC
de

bc ≡ [λb ,λc]C ,

as a sort of deformed bracket and (A4) can be rewritten
in the form

[λb ,λc]C = λaF
a

bc + Kbc. (A8)

If P ab
cd is given by

P ab
cd =

1
2

(δa
c δ

b
d − δa

dδ
b
c) (A9)

then we have
Cab

cd = δb
cδ

a
d .

Equation (A8) defines a ‘twisted’ Lie algebra with a cen-
tral extension and the F a

bc must satisfy a set of modified

Jacobi identities. From (A8) one derives immediately the
relations

[ea , eb]C = Cc
abec. (A10)

between the first and second derivatives. When P ab
cd is

of the form (A9) the derivations form a Lie algebra.
As an example we recall the case of the matrix algebra

Mn. Let λa, for 1 ≤ a ≤ n2 −1 be an anti-hermitian frame
of the Lie algebra of the special unitary group SUn. The
product λaλb can be written in the form

λaλb =
1
2
F c

abλc +
1
2
Dc

abλc − 1
n
gab. (A11)

The components gab of the Killing metric can be defined
in terms of the structure constants by the equation

gab = − 1
2n

F c
adF

d
bc.

One lowers and raises indices with gab and its inverse gab.
We suppose that A is a formal algebra with n genera-

tors xi which satisfy commutation relations of the form

[xj , xk] = ik̄Jjk, Jjk ∈ A, (Jjk)∗ = Jjk. (A12)

If the right-hand is considered as given then it must satisfy
the constraints

[xi, Jjk] + [xj , Jki] + [xk, Jji] = 0

which follow from the Jacobi identities. If J ij is non-
degenerate then the center of A is trivial. The inverse J−1

ij
exists in the sense that

J−1
ij Jjk = δk

i , J−1
ij ∈ A.

The algebra has as well n generators λa which satisfy
the quadratic relations (A8). The commutation relations
between the two sets determines the differential calculus
through the relations (A2). Consider first the case with
J ij central elements of the algebra and with λa defined by
(A19). This means that P ab

cd is given by (A9) and that
F a

bc = 0. The associated geometry is flat. Consider also
the smooth manifold V = R

n and the algebra Ã gener-
ated by the coordinates x̃i and the conjugate momenta pj .
We shall use the convention of distinguishing between the
operator pj and the result i∂̃jf of the action of pj on f .
There is a simple representation of A as a subalgebra of
the algebra of (pseudo-)differential operators Ã, given by
the identification

xi = x̃i +
1
2
k̄J ijpj . (A13)

From this it follows immediately that

f(xi) = f(x̃i) +
1
2
k̄Jjkpk∂jf + o(k̄2)

= f(x̃i) +
1
2
k̄Jjk∂jfpk + o(k̄2)

and from this ‘Taylor’ expansion in phase space we can
deduce the commutation relations

[f ,xj ] = ik̄J ij∂if + o(k̄2)
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and hence

[f ,g] = ik̄J ij∂if∂jg + o(k̄2).

This can be considered as part of an expression which
defines a noncommutative ‘∗-product’ on an algebra of
functions [11,12] using a formal expression which is an
exponential in the partial derivatives. If the J ij are not
central then by introducing the vector fields J i = J ij∂j

we can write the commutation relations as

[xi ,xj ] =
1
2
ik̄J [ij] +

1
4
k̄2[J i ,Jj ]. (A14)

In this case it is convenient to write (A13) differently.
We introduce n vector fields pa on Ã such that pa is the
operator which yields paf̃ = ieaf̃ when acting on f̃ and
the eaf̃ = ei

a(x̃k)∂̃if̃ are the commutative limits of the
elements eaf ∈ A. We define also

J ij = J ibebx
j = Jabeax

iebx
j ,

Ĵ ij = Ĵ ibêbx
j = Ĵabêax

iêbx
j

and we suppose that Jab is an hermitian central matrix
which satisfies (A20). Since

eaJ
ia = −eaebx

iJab = −JabF c
abecx

i = 0

the operators xi are hermitian provided F c
ab = 0. This

result relies on the particular form of the product we have
chosen within the algebra of forms.

If we have two ∗-products as in Sect. 3 and derivations
ea and êa then we can write equivalently (A13) in the form

xi = x̃i +
1
2
k̄J iapa, x̂i = x̃i +

1
2
k̄Ĵ iap̂a. (A15)

To lowest order this and the perturbed equivalent simplify
to respectively

[xi ,xj ] =
1
2
ik̄J [ij](xi), [xi ,̂xj ] =

1
2
ik̄Ĵ [ij](xi). (A16)

If we define θab by the identities

Ĵ ij = J ij + θij , θij = eax
iebx

jθab

then we can write the difference between the commutators
as

[f ,̂g] = [f ,g] + ik̄θabeaf ∗ ebg + o(k̄2). (A17)

In general one would expect that the λa generate also
the algebra and that each xi can be expressed as a formal
power series in the λa. The algebra depends then on the
coefficients in the (A8) for λa. In fact the whole differential
calculus depends on these coefficients:

A = A(P, F,K), Ω∗(A) = Ω∗(A)(P, F,K). (A18)

We do not imply here that (P cd
ab, F

c
ab,Kab) are the only

parameters. An explicit representation would introduce

more. In the simplest case with J ij a central non-degener-
ate matrix we can choose P ab

cd of the form (A9) and set
F c

ab = 0. We find that xi is linear in λa and the relation
can be inverted:

λa =
1
ik̄
J−1

ai x
i, λ̂a =

1
ik̄
Ĵ−1

ai x
i. (A19)

We find that Kab is given by the expression

Kab = − 1
ik̄
J−1

ab , ik̄KacJ
cb = −δb

a. (A20)

In this case we can write also

A = A(K).

The λa are represented by

λa =
1
2i
pa −Kaj x̃

j .

To a certain extent in this case one might expect that
formally at least the algebra depends only on Kab. It is
equivalent to a quantized phase space. In general we sup-
pose that the commutator is defined in terms of the C-
commutator defined above. That is we write

[xi, xj ] = [xi(λa), xj(λa)]

and use (A8) to calculate J ij in terms of (P cd
ab, F

c
ab,

Kab). In certain cases it might be more convenient to use
a representation of the λa and from them construct a rep-
resentation of the xi considered as a secondary set of gen-
erators. For example if we set

xi = ik̄J ia
0 λa, J ib

0 = δi
aJ

ab, K0,ib = δa
i Kab

then we find that

[xi ,xj ] = ik̄(J ij
0 + F ij

0 kx
k), F ij

0 k = F c
abJ

ia
0 Jjb

0 K0,kc.

We have here constructed a nonconstant J ij = J ij
0 +

F ij
0 kx

k directly from the λa, which can be considered as
comprising the first two terms an an infinite multipole ex-
pansion. More eleborate forms can be obtained by chossing

eax̃
i = δi

a + Λi
a(x̃k).

One obtains then

xi = x̃i +
1
2
k̄(J ib

0 + Λi
a(x̃k)Jab)pb. (A21)

We can choose xi to be the operator obtained by set-
ting Λi

a(x̃k) = 0 and denote x̂i the operator with generic
|Λi

a(x̃k)| � δi
a. Equation (A21) can be written as (3.3) if

we write Λi
a = δj

aΛ
i
j and set

ξi(xk) = Λi
j(x

k)(xj − x̃j).

Here the variables x̃a are to be considered as parameters.
We deduce, to lowest order, the ‘Taylor’ expansion

f(x̂i) = f(xi) +
1
2
k̄(Ĵabeafp̂b − Jabeafpb).
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If as in Sect. 3 we write λ̂b = λb + ab then from (3.10) we
find that ab must satisfy the equation

e[aab] = K̂ab + λcF̂
c
ab −Kab.

This can also be written as an equality of 2-forms: da =
dθ + θ2 − θ̂2.

The forms Kab and K̂ab obviously break Lorentz invari-
ance, as do the vectors Fa = εabcdF

bcd and F̂a = εabcdF̂
bcd.

We shall consider these effects to be of the same order of
magnitude as the gravitational effects. In particular, from
this point of view Minkowski space-time is a degenerate
limit. We would prefer to identify the absence of gravita-
tional field as the commutative limit but it is more conve-
nient to consider this state as a ‘regular’ cellular structure.
The price to be paid for this assumption is a ground state
which is not Lorenz invariant. This is unfortunate since
Lorenz invariance was the original motivation of noncom-
mutative structure [7].
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